
Leakage-Resilient Cryptography

Stefan Dziembowski
University of Rome

La Sapienza

Krzysztof Pietrzak
CWI Amsterdam

Abstract

We construct a stream-cipher S whose implementationis
secure even if a bounded amount of arbitrary (adversarially
chosen) information on the internal state of S is leaked dur-
ing computation. This captures all possible side-channel
attacks on S where the amount of information leaked in a
given period is bounded, but overall can be arbitrary large.
The only other assumption we make on the implementation
of S is that only data that is accessed during computation
leaks information.

The stream-cipher S generates its output in chunks
K1,K2, . . ., and arbitrary but bounded information leak-
age is modeled by allowing the adversary to adaptively
chose a function fℓ : {0, 1}∗ → {0, 1}λ before Kℓ is
computed, she then gets fℓ(τℓ) where τℓ is the internal
state of S that is accessed during the computation of Kℓ.
One notion of security we prove for S is that Kℓ is in-
distinguishable from random when given K1, . . . ,Kℓ−1,
f1(τ1), . . . , fℓ−1(τℓ−1) and also the complete internal state
of S after Kℓ has been computed (i.e. S is forward-secure).

The construction is based on alternating extraction
(used in the intrusion-resilient secret-sharing scheme from
FOCS’07). We move this concept to the computational set-
ting by proving a lemma that states that the output of any
PRG has high HILL pseudoentropy (i.e. is indistinguishable
from some distribution with high min-entropy) even if arbi-
trary information about the seed is leaked. The amount of
leakage λ that we can tolerate in each step depends on the
strength of the underlying PRG, it is at least logarithmic,
but can be as large as a constant fraction of the internal
state of S if the PRG is exponentially hard.

1. Introduction

When analyzing the security of a cryptosystem, we can
either think of the system as a mathematical object, exactly
specifying what kind of access to the functionality a poten-
tial adversary has, or try to analyze the security of an actual
implementation. Traditionally, cryptographers have mostly

considered the former view and analyzed the security of
the mathematical object, and it is generally believed that
our current knowledge of cryptography suffices to construct
schemes that, when modeled in this way, are extremely se-
cure. On a theoretical side, we know how to construct se-
cure primitives under quite weak complexity-theoretic as-
sumptions, for example secret-key encryption can be based
on any one-way function [17]. Also from the practical per-
spective, the currently used constructions have very strong
security properties, e.g. after 30 years of intensive cryptana-
lytic efforts still the most practical attack on the DES cipher
is exhaustive key search.

Side-Channel Attacks. The picture is much more
gloomy when the security ofreal-life implementations is
considered. This is because, when considering an imple-
mentation of a cryptosystem, one must take into account the
possibility of side-channels, which refers to leakage of any
kind of information from the cryptosystem during its execu-
tion which cannot be efficiently derived from access to the
mathematical object alone. In the last decade many attacks
against cryptosystems (still assumed to by sound as math-
ematical objects) have been found exploiting side-channels
like running-time [22], electromagnetic radiation [30, 15],
power consumption [23], fault detection [4, 3] and many
more (see e.g. [29, 27]).

A typical countermeasure against this type of attacks is
to design hardware that minimizes the leakage of secret data
(e.g. by shielding any electromagnetic emissions), or to look
for an algorithm-specific solution, for example by masking
intermediate variables using randomization (see [27] for a
list of relevant papers). The problem with hardware-based
solutions is that protection against all possible types of leak-
age is very hard to achieve [1], if not impossible. On the
other hand, most algorithm-specific methods proposed so
far are only heuristic and do not offer any formal security
proof (we mention some exceptions in Sect.1.1). Moreover,
they are ad-hoc in the sense that they protect only against
some specific attacks that are known at the moment, instead
of providing security against a large well-defined class of
attacks. This raises the following, natural question: is there

a systematic method of designing cryptographic schemes so
that already their mathematical description guarantees that
they are provably-secure, even if they are implemented on
hardware that may be subject to a side-channel attack be-
longing to a large well-defined class of attacks? Ideally,
one would like to develop a theory that (1) provides precise
definition of such a class of attacks, and (2) shows how to
construct systems that are secure in this model (under the
assumptions that are as weak as possible). This should be
viewed as moving the task of constructing cryptosystems
secure against side-channel attacks from the realm of engi-
neering or security research to cryptography, which over the
last 3 decades was extremely successful in defining security
models, and constructing cryptosystems that are provably-
secure in those models.

General Model for Leakage Resilience. We propose a
model for cryptographic computation where the class of
possible side-channel attacks is extremely broad, yet sim-
ple and natural. Models similar to ours have been pro-
posed before, in particular Micali and Reyzin [25] explicitly
stated the “only computation leaks” assumption we will use.
The only other assumption on theimplementation we make
is the (trivially necessary) requirement that the amount of
leakage in each round is bounded. This approach is inspired
by the bounded-storage and bounded-retrieval models and
has to best of our knowledge never been used in this con-
text. We stress however, that the main contribution of this
paper is not the definition of the model, but the construc-
tion of an actual cryptosystem (a stream-cipher) which is
provably secure in this model. Details follow.

Consider a cryptosystemsCS, let M denote its mem-
ory andM0 denote the data initially onM (i.e. the secret
key). Clearly the most general side-channel attack against
a cryptosystemCS(M0) is one in which the adversary can
choose any polynomial-time computableleakage function f
and retrievef(M0) from the cryptographic machine.1 Of
course no security is achievable in this setting, as defining
f(M0) = M0 the adversary learns the complete random
key. Thus a necessary restriction we must make onf is that
its output range is bounded to{0, 1}λ whereλ ≪ |M0|.

We assume that the adversary can apply this attack many
times throughout the lifetime of the device. Technically,
this will be done by dividing the execution of the algorithm
implementingCS into rounds, and allowing the adversary
to evaluate a function on the internal state ofCS in each
of those rounds (letfj denote the leakage function that she
chooses in thejth round, forj = 1, 2...). In particular, in
this paper we construct a stream cipher which in each round
outputs a few bits.

1Without loss of generality we can assume that the leakage function is
applied only toM0 since all the other internal variables used in computa-
tion are deterministic functions ofM0.

Let q be the number of rounds we want our cryptosys-
temCS to run, and letM0 be the secret key that is used in
the scheme. At first sight one may think that to hope for
any security we would need to assume thatq · λ <

∣
∣M0

∣
∣,

as otherwise the adversary can learn the entireM0, by just
retrieving in every roundλ different bits of it. This trivial
attack does not work any more if we consider cryptosys-
tems which occasionally update their state. For this letMj

denote the state ofCS after roundj.
Unfortunately, no security is possible even if we allow

CS to update its state (i.e. whenMj is not necessarily equal
toMj+1) if we allow any (poly-time computable)fj , to see
this let t = ⌈|M|/λ⌉ and considerfj , j ≤ t where each
fj outputs differentλ bits of Mt (note that the function
fj , j ≤ t can compute the future stateMt from the current
stateMj). After thetth round the adversary has learned the
complete stateMt, and no security is possible beyond this
point. We call this thekey-precomputation attack.

Hence, we have to somehow restrict the leakage func-
tion if we want security even when the total amount of
leaked information is (much) larger than the internal state.
The restriction that we will use is that in each round, the
leakage functionfj only gets as input the part of the state
Mj that is actually accessed in thejth round byCS. This
translates into a requirement on the implementation: we
assume that only computation leaks information, and the
“untouched memory cells” are completely secure. As illus-
trated in Fig. 1, in our construction of a stream-cipher,M
will consists of just three partsM0,M1 andO (whereO
is the output tape), and in thejth roundCS (and thus the
leakage functionfj) will access onlyMj mod 2 andO. We
give the leakage function (in thejth round) access to the
completeMj mod 2,O, even if the computation ofCS only
access a small part of it. Thus in an actual implementation,
one only must ensure that in thejth roundMj+1 mod 2 does
not leak. This requirement should easily be realizable by
an actual implementation havingM0 andM1 use different
static memory cells (here “static” refers to the fact that this
memory needs not to be refreshed, and thus should not leak
any kind of radiation when not used).2

Let us mention that the above restriction is not the only
natural restriction that one could make on the leakage func-
tions to avoid the key-precomputation attack. One other op-

2Let us mention that this model also covers the case where (the not
accessed)Mj+1 mod 2 does leak in roundj, as long as this leakage is
independent of the leakage of (the accessed)Mj mod 2 (i.e. when we
consider an adversaryQ′ who can in roundj choose two functionsf ′

j

andf ′′

j and then getsf ′

j(Mj mod 2) and alsof ′′

j (Mj+1 mod 2)). The
reason is that we can simulateQ′ by an adversaryQ who just chooses
one functionfj which outputsf ′

j(Mj mod 2) and alsof ′′

j+1
(Mj mod 2)

(thusQ in roundj simply precomputes the information thatQ′ will learn
in roundj + 1 on the non-leaking part). Note that it’s not a problem that
Q′ might computef ′′

j+1
adaptively as a function of the information leaked

in roundj, as the leakage functionfj has this information too, and thus
can compute thef ′′

j+1
thatQ′ would have chosen.

tion might be to allow the state to be refreshed using ex-
ternal randomness. This option might be difficult to han-
dle for many cryptosystems – including ciphers – for sev-
eral reasons. For example one must make sure that all le-
gitimate parties get the randomness in each refresh cycle,
which means that parties have to be often “online” to keep
their key valid, even if they almost never actually use it.
Another option is to require that the leakage function is in
some very weak complexity class not including the function
used for key evolution.3

Leakage Resilient Stream-Cipher. The main contribu-
tion of this paper is the construction of a stream cipherS

which is provably secure in the model described above. Let
τℓ denote the data onS’s memory which is accessed in the
ℓth round, and letKℓ denote the output written byS on its
output tapeO in theℓth round.

The classical security notion for stream ciphers implies
that one cannot distinguishKℓ from a random string given
K1, . . . ,Kℓ−1, of course our construction satisfies this no-
tion. But we prove much more, namely thatKℓ is in-
distinguishable from random even when not only given
K0, . . . ,Kℓ−1, but additionallyΛ1, . . . ,Λℓ−1 whereΛj =
fj(τj) and eachfj is a function with range{0, 1}λ chosen
adaptively (as a function ofK1, . . . ,Kj−1,Λ1, . . . ,Λj−1)
by an adversary. If the adversary also getsΛℓ, we cannot
hope thatKℓ is indistinguishable from random any more,
asfℓ could for example simply output theλ first bits ofKℓ.
The best we can hope for in this case, is thatKℓ is unpre-
dictable (or equivalently, has high HILL-pseudoentropy),in
the full version of this paper [14] we will show that for our
construction this indeed is the case.

Forward Security. In many settings, it is not enough that
Kℓ is indistinguishable (or unpredictable) given the view
of the adversary after roundℓ − 1 as just described, but it
should stay indistinguishable even ifS leaks some infor-
mation in the future. In our construction such “forward-
security” comes up naturally, as the keyKℓ is almost in-
dependent (in a computational sense) from the state ofS

afterKℓ was output. Precise security definitions are given
is Sect. 2.

Our Construction. The starting point of our construction
is the concept of alternating extraction previously used in
the intrusion-resilient secret-sharing scheme from [13].We
move this concept to the computational setting by proving a
lemma that states that the output of any PRG has high HILL

3Interestingly, that would probably be the first case of a real-life crypto-
graphic application where it makes sense to assume that the computational
power of the adversary (in some parts of the attack scenario) is smaller
than the computational power needed to execute the scheme.

pseudoentropy (i.e. is indistinguishable from some distri-
bution with high min-entropy) even if arbitrary information
about the seed is leaked. Our construction can be instanti-
ated with any pseudorandom-generator, and the amount of
leakageλ that we can tolerate in each step depends on the
strength of the underlying PRG, it is at least logarithmic, but
can be as large as a constant fraction of the internal state of
S if the PRG is exponentially secure. The impatient reader
might want to skip ahead to Section 2.2 and have a look at
the actual the definition.

On (Non-)Uniformity. Throughout, we always consider
non-uniform adversaries.4 In particular, our stream-cipher
is secure against non-uniform adversaries, and we require
the PRG used in the construction to be secure against non-
uniform adversaries. The only step in the security proof
where it matters that we are in a non-uniform setting, is
in Section 5, where we use a theorem due to Barak et al.
[2] which shows that two notions of pseudoentropy (called
HILL and metric-type) are equivalent for circuits. In [2]
this equivalence is also proved in a uniform setting, and one
could use this to get a stream-cipher secure against uniform
adversaries from any PRG secure against uniform adver-
saries. We will not do so, as for one thing the non-uniform
setting is the more interesting one in our context, and more-
over the exact security we could get in the uniform setting is
much worse (due to the security loss in the reduction from
[2] in the uniform setting).

1.1. Related work

A general theory of side-channel attacks was put forward
by Micali and Reyzin [25], who propose a number of “ax-
ioms” on which such a theory should be based. In partic-
ular they formulate and motivate the assumption that “only
computation leaks information”, used subsequently in e.g.
[16, 28] and also in this work. As mentioned in the intro-
duction, most published work on securing cryptosystems
against side-channel attacks are ad-hoc solutions trying to
prevent some particular attack or heuristics coming without
security proofs, we mention some notable exceptions below.

Exposure-resilient functions [5, 9, 20] are functions
whose output remains secure, even if an adversary can learn
the value of someinput bits, this model has been extensively
investigated and very strong results have been obtained.

Ishai et al. [19, 18] consider the more general case of
making circuits provably secure [19] and even tamper resis-
tant [18] against adversaries who can read/tamper the value

4Recall that a uniform adversary can be modelled as a Turing-machine
which as input gets a security parameter, whereas (more powerful) non-
uniform adversaries will, for each security parameter, additionally get a
different polynomial-length advice string. Equivalently,we can model
non-uniform adversaries as a sequence of circuits (indexedby the secu-
rity parameter).

of a bounded number of arbitrary wires in the circuit (and
not just the input bits). It is interesting to compare the re-
sult from this paper with the approach of Ishai et al. On one
hand, their results are generic, in the sense that they provide
a method to transform any cryptosystem given as a circuit
C into another circuitCt that is secure against an adversary
that can read-off up tot wires, whereas we only construct
a particular primitive (a stream-cipher). On the other hand,
we prove security against any side-channel attack, whereas
Ishai et al. consider the particular case where the adversary
can read-off the values of a few individual wires. Moreover
Ishai et al. require special gates that can generate random
bits, we do not assume any special hardware.

Canetti et al. [6] consider the possibility of secure com-
putation in a setting where perfect deletion of most of the
memory is not possible. Although the goal is different,
their model is conceptually very similar to ours: non-perfect
deletion ofX is modelled by giving an adversaryf(X) for
a sufficiently compressing functionf of its choice. In their
setting, the assumption that parts of the state can be per-
fectly erased is well motivated, unfortunately in our context
this would translate to the very unrealistic requirement that
some computations can be done perfectly leakage free.

The idea to define the set of leakage functions by re-
stricting the length of function’s output is taken from the
bounded-retrieval model [8, 11, 10, 7, 13], which in turn
was inspired by the bounded-storage model [24].5 Finally
let us mention that some constructions of ciphers secure
against general leakages were also proposed in the litera-
ture, however, their security proofs rely on very strong as-
sumptions like the ideal-cipher model [28], or one-way per-
mutations which do not leak any information at all [25].

1.2. Probability-theoretic preliminaries

We denote withUn the random variable with distri-
bution uniform over{0, 1}n. With X ∼ Y we de-
note that X and Y have the same distribution. Let
random variablesX0,X1 be distributed over some set
X and let Y be a random variable distributed overY.
Define the statistical distance between X0 and X1 as
δ(X0;X1) = 1/2

∑

x∈X |PX0
(x) −PX1

(x)|. Moreover
let δ(X0;X1|Y) := d(X0, Y ;X1, Y) be thestatistical dis-

5The bounded-storage model is limited in its usability by the fact that
the secret key must be larger than the memory of a potential adversary,
which means in the range of terabytes. In the bounded-retrieval model,
the key must only be larger than the amount of data adversary canre-
trieve without being detected (say, by having a computer-virus send the
data from an infected machine), which means in the range of Mega- or
Gigabytes. Whereas in our setting the key length depends on the amount
of side-channel information that leaks (in one round) form the cryptosys-
tem considered, which (given a reasonable construction) wecan assume
to be as small as a few (or a few hundred) bits. In particular, unlike the
bounded-storage and bounded-retrieval models, our keys need not to be
made artificially huge.

tance between X0 and X1 conditioned on Y . If X is dis-
tributed over{0, 1}n then letd(X) := δ(X;Un) denote the
statistical distance of X from a uniform distribution (over
{0, 1}n), and letd(X|Y) := δ(X;Un|Y) denote the sta-
tistical distance ofX from a uniform distribution,given Y .
If d(X) ≤ ǫ then we will say thatX is ǫ-close to uniform.
We will say that a variableX has min-entropyk, denoted
H∞(X) = k, if maxx Pr[X = x] = 2−k.

Definition 1 (Extractor) A function ext : {0, 1}kext ×
{0, 1}r → {0, 1}mext is an (ǫext, next) extractor if for any
X with H∞(X) ≥ next and K ∼ Ukext

we have that
d((ext(K,X),K) ≤ ǫext.

2. A Leakage-Resilient Stream-Cipher

We will now formally define our security notions which
we already informally discussed and motivated in Sect. 1.

Initialization. The secret key of our stream cipherS con-
sists of the three variablesA,B ∈ {0, 1}r and K0 ∈
{0, 1}k. The valuesA,B,K0 should be sampled uniformly
at random, but onlyA,B must be secret,K0 must not, one
can think ofK0 as the firstk bits of output ofS. In an
implementation, the memory ofS is assumed to be split in
three parts,M0,M1,O, and for j > 0 we denote with
Mj−1

0 ,Mj−1
1 ,Oj−1 the contents ofM0,M1,O at the be-

ginning of thejth round, in particular the initial state is
M0

0 = A,M0
1 = B andO0 = K0.

Computation. As illustrated in Fig. 1, in theℓth roundS

does only access (which means reads and possible rewrites)
Mℓ mod 2 and the output tapeO. Let τℓ denote the values
(on eitherM0 orM1) that is accessed in theℓth round, and
τ ℓ the value which is not accessed, i.e.

τℓ
def
= Mℓ−1

ℓ mod 2 τ ℓ
def
= Mℓ−1

ℓ+1 mod 2 (1)

We will refer to the output of theℓth round (i.e. the value
Oℓ on the output tapeO at the end of this round) asKℓ.

Adversary. As illustrated in Fig. 1, we consider adver-
sariesQ which in theℓth round can adaptively choose a
functionfℓ with range{0, 1}λ, and at the end of the round
gets the outputKℓ and

Λℓ
def
= fℓ(τℓ)

i.e. the output offℓ on input the data accessed byS in this
round. We denote withAλ adversaries as just described
restricted to choose leakage functions with range{0, 1}λ.
Let viewℓ denote the view of the adversary afterKℓ has
been computed, i.e.

viewℓ = [K0, . . . ,Kℓ,Λ1, . . . ,Λℓ].

Indistinguishability. The security notion we consider re-
quires thatKℓ is indistinguishable from random, even when
givenviewℓ−1.

A K0 B

M0
0 O0 = K0 M0

1 Q

eval

S

M1
0 O1 = K1 M1

1 Q

eval

S

M2
0 O2 = K2 M2

1 Q

eval

S

M3
0 O3 = K3 M3

1 Q

f1τ1

f1(τ1)

f2

τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 1. General structure of the random ex-
periment S(A,K0, B)

3
Ã Q (the evaluation of S

is black, the attack related part is gray).

We denote withS(A,B,K0)
ℓ
Ã Q the random ex-

periment where an adversaryQ ∈ Aλ attacksS (initial-
ized with a keyA,B,K0) for ℓ rounds (cf. Fig. 1), and

with view(S(A,B,K0)
ℓ
Ã Q) we denote the viewviewℓ

of Q at the end of the attack. For any circuitDind :
{0, 1}∗ → {0, 1} (with one bit output), we denote with
AdvInd(Dind,Q,S, ℓ) the advantage ofDind in distinguish-

ing Kℓ from random givenview(S
ℓ−1
Ã Q), formally

AdvInd(Dind,Q,S, ℓ) = |preal − prand| where

prand
def
= Pr

A,B,K0

[Dind(view(S(A,B,K0)
ℓ−1
Ã Q), Uk) = 1]

preal
def
= Pr

A,B,K0

[Dind(view(S(A,B,K0)
ℓ−1
Ã Q),Kℓ) = 1]

In the full version of this paper, we will also consider the
case where the distinguisher also getsΛℓ, i.e. we assume
that information leaks also in roundℓ. Although then we
can’t hope forKℓ to be indistinguishable from random (as
Λℓ could for example be the firstλ bits ofKℓ), we still can
require thatKℓ is unpredictable.

Forward Security of S. As motivated in the introduction,
we’ll also consider “forward-secure” notions of the above
definition. Informally, we’d like to extend the definitions
AdvInd just given, but additionally give the attackerDind the
complete stateMℓ

0,O
ℓ,Mℓ

1 of S after Kℓ has been com-
puted. Of course thenKℓ = Oℓ cannot be secure in any
way as it is given toDind entirely. We could simply not give

Oℓ to Dind, but then we cannot claim that we leaked the
state ofS completely, as in our constructionOℓ is needed
to compute the future outputs ofS. There are at least two
ways around this problem. We could relax our requirement
on forward security, and not leak the state after roundℓ, but
only after roundℓ + 1 (in terms of the implementation, this
would mean that the outputKℓ is indistinguishable, if in
roundsℓ and ℓ + 1 nothing leaked, even given the complete
state ofS after roundℓ + 1).

Another possibility, which we’ll use, is to split the value
Kℓ into two partsKℓ = Knxt

ℓ ‖Kout
ℓ , such that only theKnxt

ℓ

part is actually used byS to compute the future state. We
then require thatKout

ℓ (and not the entireKℓ) is indistin-
guishable from random if in roundℓ nothing leaked, even
when given the state ofS after roundℓ, whereKout

ℓ is not
considered to be part of the state.

Let stateℓ
def
= [Mℓ

0,K
nxt
ℓ ,Mℓ

1] denote the state ofS
after roundℓ (not containingKout

ℓ as just explained). The
forward secure indistinguishability notion is given by

AdvIndFwd(Dind,Q,S, ℓ) = |pfwd
real − pfwd

rand|

wherepfwd
rand andpfwd

real are the probabilities

Pr
A,B
K0

[Dind(view(S(A,B,K0)
ℓ−1
Ã Q, stateℓ), U|Kout|) = 1]

Pr
A,B
K0

[Dind(view(S(A,B,K0)
ℓ−1
Ã Q, stateℓ),K

out
ℓ) = 1]

respectively. The only difference toAdvInd is that nowDind

additionally getsstateℓ, and we only requireKout
ℓ (and

not the wholeKℓ) to be indistinguishable. Thus one gets
forward security at the prize of discarding theKnxt

ℓ part of
S’s outputKℓ. In our construction,Knxt

ℓ will be just a ran-
dom seed for an extractor, using existing constructions we
can make this part logarithmic in the total length ofKℓ, thus
the efficiency loss one has to pay to get forward security is
marginal.

2.1. The Ingredients

The main ingredients of our construction is the concept
of alternating extraction introduced in the intrusion-resilient
secret-sharing scheme of [13] (which again was based on
ideas from the bounded storage model [12, 24, 31]), com-
bined with the concept of HILL-pseudoentropy (cf. Def. 3,
Sect. 5) which we use to get acomputational version of al-
ternating extraction.

Alternating Extraction. Let ext : {0, 1}kext × {0, 1}r →
{0, 1}k be an(ǫext, next)-extractor (cf. Def. 1). Consider
some uniformly randomA,B ∈ {0, 1}r and some ran-
dom K0 ∈ {0, 1}k. As illustrated in Fig. 3 in Sect. 4, let

K1,K2, . . . be computed asKi = ext(Knxt
i−1, Ci) (where

Knxt denotes thekext first bits ofK andCi = B if i is odd
andCi = A otherwise). So theKi’s are computed by al-
ternately extracting fromA andB. It is not hard to show
thatKi = ext(Knxt

i−1, Ci) is iǫext close to uniformly random
givenK0, . . . ,Ki−1 while Ci has still enough min-entropy
for our extractor (i.e.H∞(Ci|K1, . . . ,Ki−1) ≥ next).

As shown in [13], the keyKi is even close to uniformly
random when not only givenK1, . . . ,Ki−1 but also some
valuesf1(C1), . . . , fi−1(Ci−1) for arbitrary functionsfi as
long asCi has min-entropy at leastnext (conditioned on
K0, . . . ,Ki−1, andf1(C1), . . . , fi−1(Ci−1)).

Consider a “stream cipher”S∗(A,B,K0) which outputs
K1,K2, . . . computed as described above, and an adversary
Q which, beforeKi is computed, can adaptively choose
a functionfi and then getsKi, fi(Ci).6 As explained in
the previous paragraph, we can give the following security
guarantee forS∗: as long as the min-entropy ofCi is at
leastnext (given the adversary’s view), the next outputKi

is close to uniformly random (given the view of the adver-
sary so far).

Pseudoentropy. The stream cipherS∗ just described is
not very useful, as it only provides security (in the sense
that the next output looks random given the current view as
required by ourAdvInd security notion) as long as the out-
put (i.e. theKi’s plus the leaked information) is shorter (by
at leastnext bits) than the initial key.

To get security beyond that bound, we will “refresh”
the valuesA,B after we extracted from them. LetAi =
Mi

0 and Bi = Mi
1 denote the values onM0 andM0

after roundi respectively. In roundi (we assumei is
odd, otherwise replace the role ofA and B) we extract
(Ki,Xi) = ext(Knxt

i−1, Bi−1), and useXi to compute the
freshBi := prg(Xi) using a pseudorandom generatorprg

as illustrated in Fig. 2. If at the beginning of theith round
Bi−1 has min-entropy at leastnext (given the adversaries
view), Knxt

i−1 is pseudorandom (givenBi) and we assume
that during thisith round no information is leaked, thenXi,
and thus alsoBi = prg(Xi) is pseudorandom given the
view of the adversary.

Of course assuming that the refreshing phase does not
leak any information is completely unjustified, and we
do not want to make such an assumption. As we give
Λi = fi(Bi) to the adversary, we cannot hope forBi to
be pseudorandom (just consider the case wherefi(Bi) are
the λ first bits of Bi). Fortunately,Bi needs not to be
(pseudo)random to apply alternating extraction, all we need
is thatBi has high min-entropy. Of courseBi = prg(Xi)
cannot have more min-entropy thanXi, but as we consider
computationally bounded adversaries, it is enough ifBi

6As Ki−1 can be hard-coded intofi, this function has access to all the
data accessed during the computation ofKi = ext(Knxt

i−1
, Ci)

is indistinguishable from some distribution with high min-
entropy. A random variable which is computationally indis-
tinguishable from some variable with min-entropyk is said
to have HILL-pseudoentropyk. It is not hard to see that
a pseudorandom valueBi has high HILL-pseudoentropy
when givenfi(Bi) for some efficient functionfi, but this
is not enough for our application, as the leakage function
fi is given access toBi−1 (and not justBi), from which it
can compute the seedXi used to computeBi = prg(Xi).
We will prove (Lemma 3) that for any pseudorandom gen-
eratorprg, the output ofprg(X) on a random seedX has
high HILL-pseudoentropy even if some function (with suf-
ficiently short output) ofX (and not onlyprg(X)) is leaked.

Using this lemma, we can prove that refreshing using
a PRG as just described actually works, and will result in
a “fresh” valueBi (or Ai for eveni) having high HILL-
pseudoentropy.

2.2. The construction

M0 O M1

A0 K0 = Knxt
0 ‖Kout

0 B0 Q

eval

(K1,X1) := ext(Knxt
0 , B0)

A1 = A0 K1 B1 = prg(X1) Q

eval

(K2,X2) := ext(Knxt
1 , B1)

A2 = prg(X2) K2 B2 = B1 Q

eval

(K3,X3) := ext(Knxt
2 , B2)

A3 = A2 K3 B3 = prg(X3) Q

f1τ1

f1(τ1)

f2

τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 2. Illustration of the random experi-
ment S(A0, B0,K0)

3
Ã Q for the stream cipher

S as described in Section 2.2.

We will now formally define the construction just out-
lined, based on an extractorext : {0, 1}kext × {0, 1}r →
{0, 1}mext and a pseudorandom generatorprg : {0, 1}kprg →
{0, 1}r (c.f Sect. 5).

State: The state ofS at the beginning of roundℓ is
Mℓ−1

0 ,Mℓ−1
1 ,Oℓ−1. The computation done in round

ℓ is defined below.

Get Key: ReadKℓ−1 = Oℓ−1 and parse it asKℓ−1 =
(Knxt

ℓ−1,K
out
ℓ−1) ∈ {0, 1}kext × {0, 1}kout .

Extract: Computeext(Knxt
ℓ−1,M

ℓ−1
ℓ mod 2) and parse it as

(Kℓ,Xℓ) ∈ {0, 1}k × {0, 1}kprg .

Write output: Write Kℓ onO.

Refresh: Computeprg(Xℓ) and write it onMℓ mod 2.

3. Security ofS

Total Size. We denote withsize(D) the size of a circuit

D. For an adversaryQ ∈ Aλ, size(S
ℓ
Ã Q) denotes the

size of a circuit needed to implement the random experi-

mentS
ℓ
Ã Q.

Theorem 1 (Security ofS) Let ext : {0, 1}kext×{0, 1}r →
{0, 1}mext be an (ǫext, next)-extractor, and let prg :
{0, 1}kprg → {0, 1}r be an (ǫprg, sprg) pseudorandom gen-
erator. Consider any ǫHILL > 0 and let ŝ ≈ ǫ2HILLsprg/8r.7

Consider any ǫgap > 0,∆ > 0 where

ǫprg ≤
ǫ2gap

2λ
−2−∆ , next ≤ r−∆−(λ+mext)−2 log(1/ǫgap)

(2)

Then for all adversaries Q ∈ Aλ and D where size(S
ℓ
Ã

Q) + size(D) ≤ ŝ with δℓ
def
= ℓ2(3ǫgap + ǫHILL + ǫext)

AdvInd(D,Q,S, ℓ) ≤ δℓ and AdvIndFwd(D,Q,S, ℓ) ≤ δℓ

(3)
We actually do not even need the initial key to S to be uni-
formly random, but only require a weaker condition as give
by equations (10) and (11).

The proof of Theorem 1 is split in three parts. The first
part in Section 4 on alternating extraction is information
theoretic and uses ideas from the intrusion-resilient secret-
sharing scheme from [13]. In the second part (Section 5)
we revisit some notions and results on computational pseu-
doentropy. We then prove that the output of any pseudo-
random generator has high HILL pseudoentropy even if in-
formation about the seed is leaked. In Section 6 we prove
Theorem 1 by using the result from Section 5 to get a com-
putational version of alternating extraction from Section4.

How Much Leakage can we Tolerate? The amount of
leakageλ we can tolerate is bounded by (2) asǫprg ≤
ǫ2gap/2λ − 2−∆. For concreteness, assume we set∆ such

that2−∆ ≤ ǫprg/2 andǫgap ≥ 4

√

ǫprg/4, then we can set

λ =

⌊

log ǫ−1
prg

2

⌋

To see what this means it is convenient to take an asymp-
totic viewpoint and think ofS as afamily of stream ciphers

7See Lemma 2 as to whatŝ exactly is.

indexed by a security parameter which we identify with
kprg, i.e. the input length toprg. If prg is secure against
polynomial-size circuits, thenǫprg = 2−ω(log kprg) (and thus
λ ∈ ω(log kprg)), and if prg is secure against exponential
size circuits, thenǫprg = 2−Θ(kprg) (andλ ∈ Θ(kprg)).

Already theλ ∈ ω(log kprg) case covers quite a large
class of real-life attacks. In particular many attacks based
on measuring the power consumption result in logarithmic-
size leakages, e.g. in a so-calledHamming weight attack
(see e.g. [21]) the adversary just learns the number of wires
carrying the bit 1. Of course this value is of logarithmic
length in the size of the circuit, and hence also inkprg.

In the caseλ ∈ Θ(kprg) (i.e. if prg is exponentially hard)
one can leak even constant fraction of the entire state ofS.

4. Random Keys by Alternating Extraction

A K0 = Knxt
0 ‖K ′

0 B Q

eval

ext

A K1 = ext(Knxt
0 , B) B Q

eval

ext

A K2 = ext(Knxt
1 , A) B Q

eval

ext

A K3 = ext(Knxt
2 , B) B Q

f1τ1

f1(τ1)

f2

τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 3. The “alternating extraction” random
experiment S∗(A,B,K0)

3
Ã Q as considered

in Lemma 1.

In this section we state an information theoretic result
which is very similar to the main main technical lemma
used in the security proof of the intrusion-resilient secret-
sharing scheme from [13], a proof appears in [14].

Basically, we consider the random experimentS
ℓ
Ã Q

but without the refreshing. For this letS∗ denoted the con-
structionS but whereA andB are never replaced: thus in

the random experimentS∗(A,B,K0)
ℓ
Ã Q whereQ ∈ Aλ,

in the jth round Q chooses a functionfj : {0, 1}r →
{0, 1}λ and as output getsKj = ext(Knxt

j−1, τj) andΛj =
fj(τj) whereτj = B if j is odd andτj = A otherwise.

As Q attacksS∗, she learns information onA andB, and
thus the min-entropy ofA andB degrades. We show that as
long as the min-entropy ofA andB is high enough (which
means more thannext as required by the extractorext), the

next keyKj to be output is close to uniformly random when
given the view afterKj−1 has been computed.

Lemma 1 belows similar to Lemma 8 from [13] (for the
special case of two players).

Lemma 1 (Alternating Extraction) Let ext : {0, 1}kext ×
{0, 1}r → {0, 1}mext be an (ǫext, next)-extractor. Let
A,B ∈ {0, 1}r and K0 ∈ {0, 1}k be random variables
where A and B are independent and

d(K0|B) ≤ ǫ0 H∞(A) ≥ r−∆ H∞(B) ≥ r−∆,

Consider any λ,∆, r ≥ 0 and 1 ≥ ǫgap > 0 which satisfy

next ≤ r − ∆ − ⌈ℓ/2⌉(λ + mext) − log(1/ǫgap).

Consider any adversary Q ∈ Aλ and the random ex-

periment S∗(A,B,K0)
ℓ
Ã Q. Recall that viewℓ =

[K0, . . . ,Kℓ, Λ1, . . . ,Λℓ] and τℓ = B if ℓ is odd and
τℓ = A otherwise. We have

d(Kℓ+1|viewℓ, τℓ) ≤ (ℓ + 1)ǫext + 2ǫgap + ǫ0,

i.e. given τℓ and the view of Q after the computation of
Kℓ, the next key Kℓ+1 = ext(Kℓ, τ ℓ) to be output by S is
(ℓǫext + 2ǫgap + ǫ0)-close to uniformly random.

5. Pseudoentropy

In this section we will prove that the output of a PRG has
high HILL-pseudoentropy even if some function of the seed
is leaked. We first prove this result for a weaker notion of
pseudoentropy called “metric-type”, and then use the equiv-
alence of metric-type and HILL-pseudoentropy (Lemma 2)
to get our lower bound for HILL-pseudoentropy.

Basic Definitions We denote withδD(X;Y) the advan-
tage of a circuitD in distinguishing the random variables

X,Y , i.e.: δD(X;Y)
def
= |Pr[D(X) = 1]−Pr[D(Y) = 1]|.

With δs(X;Y) we denotemaxDδD(X;Y) where the max-
imum is over all circuitsD of sizes. For a random variable
X over{0, 1}z, ds(X)

def
= δs(X;Uz).

Definition 2 (Pseudorandom Generator)A function prg :
{0, 1}n → {0, 1}m is a (δ, s)-secure pseudorandom gener-
ator (PRG) if ds(prg(Un)) ≤ δ.

Definition 3 (HILL pseudoentropy[17, 2]) We say X has
HILL pseudoentropy k, denoted by HHILL

ǫ,s (X) ≥ k, if there
exists a distribution Y where H∞(Y) ≥ k and δs(X,Y) ≤
ǫ.

The above definition requires that there exists a distribution
Y with high min-entropy that is indistinguishable fromX
by all distinguishers. One can also consider a notion where
the quantifiers are exchanged, i.e. to allow the distribution
to depend on the distinguisher.

Definition 4 (Metric-type pseudoentropy [2]) We say X
has metric-typepseudoentropy k, denoted HMetric

ǫ,s (X) ≥ k,
if for every circuit D of size s there exists a distribution Y
with H∞(Y) ≥ k and δD(X,Y) ≤ ǫ.

Barak et al. [2] use the von Neumann’s min-max theorem
[26] to prove the equivalence ofHHILL andHMetric.

Lemma 2 Let X be a distribution over {0, 1}n. For every
ǫ, ǫHILL > 0 and k, if HMetric

ǫ,s (X) ≥ k then HHILL
ǫ+ǫHILL,ŝ(X) ≥

k where s ∈ O(nŝ/ǫ2HILL) or equivalently ŝ ∈ Ω(ǫ2HILLs/n).
More precisely (by inspection of the proof of Thm.5.2 in [2])
s ≤ 8nŝ/ǫ2HILL − ζ where ζ is the size of a circuit needed to
compute the majority of 8n/ǫ2HILL bits.

5.1. Pseudoentropy of a PRG

By the following lemma, the output of a PRG has high
metric-type pseudoentropy (and thus by Lemma 2 also high
HILL-pseudoentropy) even if some function of its input is
leaked.

Lemma 3 (Metric/HILL Pseudoentropy of a PRG) Let
prg : {0, 1}n → {0, 1}m and f : {0, 1}n → {0, 1}λ

(where 1 ≤ λ < n < m) be any functions. If prg is
a (ǫprg, sprg)-secure pseudorandom-generator, then for

any ǫ,∆ > 0 satisfying ǫprg ≤ ǫ2

2λ − 2−∆, we have with
X ∼ Un

Pr
y:=f(X)

[HMetric
ǫ,sprg

(prg(X)|f(X) = y) ≥ m − ∆] ≥ 1 − ǫ

(4)
and for any ǫHILL > 0

Pr
y:=f(X)

[HHILL
ǫ+ǫHILL,ŝ(prg(X)|f(X) = y) ≥ m − ∆] ≥ 1 − ǫ

(5)
where ŝ ≈ ǫ2HILLsprg/8m.

Proof : Eq. (5) follows from (4) by Lemma 2. To prove (4)
assume for contradiction that it does not hold. Hence, by
Def. 4, there exists a subset

S ⊆ {0, 1}λ where Pr[f(Un) ∈ S] > ǫ (6)

such that for eacha ∈ S there exists a distinguisherDa of
size at mostsprg such that for every random variableZ with
H∞(Z) ≥ m − ∆ we have (againX ∼ Un)

|Pr[Da(Z) = 1] − Pr[Da(prg(X)) = 1|f(X) = a]| ≥ ǫ
(7)

Consider somea ∈ S for which

Pr[f(Un) = a] > 2−λ · ǫ (8)

Such ana exists by (6) and as|S| = 2λ. Our distin-
guisher for the PRGprg will be the distinguisherDa sat-
isfying (7) and (8). It remains to prove thatDa breaks
prg with advantage higher thanǫprg. For β ∈ {0, 1} let
Iβ := {x ∈ {0, 1}m : Da(x) = β}

Claim 1 For some β ∈ {0, 1} we have |Iβ | < 2m−∆

Proof of Claim: Assume for contradiction that|Iβ | ≥
2m−∆ for β = 0 andβ = 1. Forβ ∈ {0, 1} andX ∼ Un

let pβ = Pr[Da(prg(X)) = β|f(X) = a]. Let Z ′ be a ran-
dom variable distributed uniformly overS′

0 ∪ S′
1 whereS′

β

is an arbitrary subset ofIβ of sizepβ2m−∆ (here we use the
fact that|Iβ | ≥ 2m−∆). Clearly since|S′

0 ∪ S′
1| = 2m−∆

we have thatH∞(Z ′) = m − ∆ and by construction (with
X ∼ Un)

Pr[Da(Z ′) = 1]
︸ ︷︷ ︸

=Pr[Z′∈S′

1
]=p1

−Pr[Da(prg(X)) = 1|f(X) = a] = 0

contradicting (7). This finishes the proof of the claim.△
Forβ as guaranteed by the above claim, we have

Pr[Da(Um) = β] = |Iβ |/2m < 2−∆. (9)

By equation (7), using thatH∞(Um) = m > m − ∆ we
get:

|Pr[Da(Um) = β]
︸ ︷︷ ︸

<2−∆

−Pr[Da(prg(X)) = β|f(X) = a]| ≥ ǫ

By assumption, we haveǫ ≥ ǫ2/2λ > 2−∆. As for any
x, y, ǫ ≥ 0 we have that|x−y| ≥ ǫ andǫ > x impliesy ≥ ǫ,
the above equation impliesPr[Da(prg(X) = β|f(X) =
a] ≥ ǫ, and further withX ∼ Un

Pr[Da(prg(X)) = β]

≥ Pr[Da(prg(X)) = β|f(X) = a]
︸ ︷︷ ︸

≥ǫ

·Pr[f(X) = a]
︸ ︷︷ ︸

>2−λ·ǫ by(8)

>
ǫ2

2λ
.

By (9) and the above equation, the advantage ofDa for Um

andprg(Un) is at least

Pr[Da(prg(Un)) = β]−Pr[Da(Um) = β] >
ǫ2

2λ
−2−∆ ≥ ǫprg

which contradicts the(ǫprg, sprg)-security ofprg. ¤

6 Putting Things Together

In this section we show how the security ofS as stated
in Theorem 1 follows from the results in the two previous
sections.S is based onext andprg where

• ext : {0, 1}kext×{0, 1}r → {0, 1}mext is an(ǫext, next)-
extractor.

• prg : {0, 1}kprg → {0, 1}r is an(ǫprg, sprg) pseudoran-
dom generator.

Further we setkout := mext − kext + kprg (thusmext =
kext + kout + kprg) and fix parameters∆, ǫgap, λ satisfying

ǫprg ≤
ǫ2gap

2λ
−2−∆ andnext ≤ r−∆−(λ+mext)− log ǫ−1

gap

We also fix someǫHILL > 0 and set̂s := ǫ2HILLsprg/8r.
The following lemma quantifies how much security is

“lost” by one round of our stream cipher. Letsizei denote
the size of the circuit realizing theith round of the experi-

mentS
ℓ
Ã Q, then

∑ℓ
i=1 sizei = size(S

ℓ
Ã Q).

Lemma 4 (Theith round) Consider the random experi-

ment S
ℓ
Ã Q. Then if before round i ≤ ℓ (recall that

τ i−1 = τi = Bi if i is odd and τ i−1 = τi = Ai other-

wise) for some si−1 ≤ ŝ and ǫ′
def
= ǫHILL + ǫgap

HHILL
ǫ′,si−1

(Ai−1|viewi−1, Bi−1) ≥ r − ∆

HHILL
ǫ′,si−1

(Bi−1|viewi−1, Ai−1) ≥ r − ∆

dsi−1
(Ki−1|viewi−2, τ i−1) ≤ ǫi−1

then with si
def
= si−1 − sizei, s

′
i

def
= si−1 − size(ext) and

ǫi
def
= ǫi−1 + ǫext + ǫgap + ǫ′.

ds′

i
(Ki,Xi|viewi−1, τ i) ≤ ǫi

with probability 1 − ǫgap − ǫi

HHILL
ǫ′,si

(Ai|viewi, Bi) ≥ r − ∆

HHILL
ǫ′,si

(Bi|viewi, Ai) ≥ r − ∆

This lemma can be proven by using Lemma 3 to get a com-
putational version of the alternating extraction Lemma 1
(see the full version [14] for details). We’ll now see how
Theorem 1 is implied by this lemma. Letǫ0 = 0 ands0 = ŝ,

thenǫℓ = ℓ(2ǫgap+ǫext+ǫHILL) andsℓ = ŝ−size(S
ℓ

Ã Q).
If the initial keyA0, B0,K0 satisfies

HHILL
ǫ′,s0

(A0|B0) ≥ r − ∆ HHILL
ǫ′,s0

(B0|A0) ≥ r − ∆ (10)

d(K0|B0) = ǫ0 (11)

as it is the case in Theorem 1, by Lemma 4 with probability
1 −

∑ℓ

i=1(ǫgap + ǫi) ≥ 1 − ℓ(ǫgap + ǫℓ) we have

ds′

ℓ
(Kℓ,Xℓ|viewℓ−1, τ ℓ) ≤ ǫℓ

This proves (note thats′ℓ < sℓ) the bound for theAdvInd

as stated in Theorem 1. To prove the bound forAdvIndFwd

we moveXℓ,K
nxt
ℓ to the conditioned part (recall thatKℓ =

Knxt
ℓ ‖Kout

ℓ)

ds′

ℓ
(Kout

ℓ |Knxt
ℓ ,Xℓ, viewℓ−1, τ ℓ) ≤ ǫℓ

Then we apply theprg to Xℓ

ds′ℓ − |prg|
︸ ︷︷ ︸

>sℓ

(Knxt
ℓ |Kout

ℓ , viewℓ−1,

Aℓ,Bℓ

︷ ︸︸ ︷

τ ℓ+1
︸︷︷︸

prg(Xℓ)

, τ ℓ) ≤ ǫℓ

References

[1] R. Anderson and M. Kuhn. Tamper resistance: a cau-
tionary note. InWOEC’96

[2] B. Barak, R. Shaltiel, and A. Wigderson. Computa-
tional analogues of entropy. InRANDOM-APPROX,
2003.

[3] E. Biham and A. Shamir. Differential fault analysis of
secret key cryptosystems. InCRYPTO 1997.

[4] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the
importance of checking cryptographic protocols for
faults (extended abstract). InEUROCRYPT 1997.

[5] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and
A. Sahai. Exposure-resilient functions and all-or-
nothing transforms. InEUROCRYPT 2000.

[6] R. Canetti, D. Eiger, S. Goldwasser, and D.-Y. Lim.
How to protect yourself without perfect shredding. In
ICALP (2) 2008.

[7] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton,
and S. Walfish. Intrusion-resilient key exchange in the
bounded retrieval model. InTCC 2007.

[8] G. D. Crescenzo, R. J. Lipton, and S. Walfish. Per-
fectly secure password protocols in the bounded re-
trieval model. InTCC 2006.

[9] Y. Dodis, A. Sahai, and A. Smith. On perfect and
adaptive security in exposure-resilient cryptography.
In EUROCRYPT 2001.

[10] S. Dziembowski. Intrusion-resilience via the
bounded-storage model. InTCC 2006.

[11] S. Dziembowski. On forward-secure storage. In
CRYPTO 2006.

[12] S. Dziembowski and U. M. Maurer. On generating the
initial key in the bounded-storage model. InEURO-
CRYPT 2004.

[13] S. Dziembowski and K. Pietrzak. Intrusion-resilient
secret sharing. InFOCS 2007.

[14] S. Dziembowski and K. Pietrzak. Full version of this
paper. Cryptology ePrint Archive, Report 2008/240,
2008. http://eprint.iacr.org.

[15] K. Gandolfi, C. Mourtel, and F. Olivier. Electromag-
netic analysis: Concrete results. InCHES 2001.

[16] S. Goldwasser, Y. T. Kalai, and G. Rothblum. One-
time programs. InCRYPTO 2008.

[17] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby.
A pseudorandom generator from any one-way func-
tion. SIAM J. Comput., 28(4):1364–1396, 1999.

[18] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner.
Private Circuits II: Keeping Secrets in Tamperable Cir-
cuits. InEUROCRYPT 2006.

[19] Y. Ishai, A. Sahai, and D. Wagner. Private Cir-
cuits: Securing Hardware against Probing Attacks. In
CRYPTO 2003.

[20] J. Kamp and D. Zuckerman. Deterministic extractors
for bit-fixing sources and exposure-resilient cryptog-
raphy.SIAM J. Comput., 36(5):1231–1247, 2007.

[21] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side
channel cryptanalysis of product ciphers. In J.-J.
Quisquater, Y. Deswarte, C. Meadows, and D. Goll-
mann, editors,ESORICS 1998.

[22] P. C. Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In
CRYPTO 1996.

[23] P. C. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. InCRYPTO 1999.

[24] U. M. Maurer. A provably-secure strongly-
randomized cipher. InEUROCRYPT 1990.

[25] S. Micali and L. Reyzin. Physically observable cryp-
tography (extended abstract). InTCC 2004.

[26] J. V. Neumann. Zur Theorie der Gesellschaftsspiele.
Mathematische Annalen, 100(1):295–320, 1928.

[27] E. N. of Excellence (ECRYPT). The side chan-
nel cryptanalysis lounge. http://www.crypto.ruhr-uni-
bochum.de/ensclounge.html.

[28] C. Petit, F.-X. Standaert, O. Pereira, T. G. Malkin, and
M. Yung. A block cipher based prng secure against
side-channel key recovery. Cryptology ePrint Archive,
Report 2007/356, 2007. http://eprint.iacr.org/.

[29] J.-J. Quisquater and F. Koene. Side channel attacks:
State of the art, October 2002. [27].

[30] J.-J. Quisquater and D. Samyde. Electromagnetic
analysis (ema): Measures and counter-measures for
smart cards. InE-smart 2001.

[31] S. P. Vadhan. Constructing locally computable extrac-
tors and cryptosystems in the bounded-storage model.
J. Cryptology, 17(1):43–77, 2004.

