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Abstract

Wk construct a stream-cipher S whose implementations
secure even if a bounded amount of arbitrary (adversarially
chosen) information on the internal state of S isleaked dur-
ing computation. This captures all possible side-channel
attacks on S where the amount of information leaked in a
given period is bounded, but overall can be arbitrary large.
The only other assumption we make on the implementation
of S isthat only data that is accessed during computation
leaks information.

The stream-cipher S generates its output in chunks
K, K,, ..., and arbitrary but bounded information leak-
age is modeled by allowing the adversary to adaptively
chose a function f, : {0,1}* — {0,1}* before K, is
computed, she then gets f,(7¢) where 7, is the internal
state of S that is accessed during the computation of K.
One notion of security we prove for S is that K, is in-
distinguishable from random when given Kq,..., Ky 1,
fi(m1), ..., fe—1(7e—1) and also the completeinternal state
of S after K, has been computed (i.e. S is forward-secure).

The construction is based on alternating extraction
(used in the intrusion-resilient secret-sharing scheme from
FOCS 07). We move this concept to the computational set-
ting by proving a lemma that states that the output of any
PRG hashigh HILL pseudoentropy (i.e. isindistinguishable
from some distribution with high min-entropy) even if arbi-
trary information about the seed is leaked. The amount of
leakage A that we can tolerate in each step depends on the
strength of the underlying PRG, it is at least logarithmic,
but can be as large as a constant fraction of the internal
state of S if the PRG is exponentially hard.

1. Introduction
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considered the former view and analyzed the security of
the mathematical object, and it is generally believed that
our current knowledge of cryptography suffices to construct
schemes that, when modeled in this way, are extremely se-
cure. On a theoretical side, we know how to construct se-
cure primitives under quite weak complexity-theoretic as-
sumptions, for example secret-key encryption can be based
on any one-way function [17]. Also from the practical per-
spective, the currently used constructions have very gtron
security properties, e.g. after 30 years of intensive enyat

lytic efforts still the most practical attack on the DES aiph

is exhaustive key search.

Side-Channel Attacks. The picture is much more
gloomy when the security afeal-life implementations is
considered. This is because, when considering an imple-
mentation of a cryptosystem, one must take into account the
possibility of side-channels, which refers to leakage of an
kind of information from the cryptosystem during its execu-
tion which cannot be efficiently derived from access to the
mathematical object alone. In the last decade many attacks
against cryptosystems (still assumed to by sound as math-
ematical objects) have been found exploiting side-channel
like running-time [22], electromagnetic radiation [30,],15
power consumption [23], fault detection [4, 3] and many
more (see e.g. [29, 27]).

A typical countermeasure against this type of attacks is
to design hardware that minimizes the leakage of secret data
(e.g. by shielding any electromagnetic emissions), orda& lo
for an algorithm-specific solution, for example by masking
intermediate variables using randomization (see [27] for a
list of relevant papers). The problem with hardware-based
solutions is that protection against all possible typesak}
age is very hard to achieve [1], if not impossible. On the
other hand, most algorithm-specific methods proposed so
far are only heuristic and do not offer any formal security

When analyzing the security of a cryptosystem, we can proof (we mention some exceptions in Sect.1.1). Moreover,
either think of the system as a mathematical object, exactlythey are ad-hoc in the sense that they protect only against
specifying what kind of access to the functionality a poten- some specific attacks that are known at the moment, instead
tial adversary has, or try to analyze the security of an &ctua of providing security against a large well-defined class of

implementation. Traditionally, cryptographers have ryost

attacks. This raises the following, natural question: é¢h



a systematic method of designing cryptographic schemes so Let ¢ be the number of rounds we want our cryptosys-

that already their mathematical description guarantess th

tem CS to run, and letM° be the secret key that is used in

they are provably-secure, even if they are implemented onthe scheme. At first sight one may think that to hope for
hardware that may be subject to a side-channel attack beany security we would need to assume that\ < ]M0|,

longing to a large well-defined class of attacks? Ideally,
one would like to develop a theory that (1) provides precise
definition of such a class of attacks, and (2) shows how to

as otherwise the adversary can learn the euitif?, by just
retrieving in every round different bits of it. This trivial
attack does not work any more if we consider cryptosys-

construct systems that are secure in this model (under theéems which occasionally update their state. For thisuet
assumptions that are as weak as possible). This should beenote the state &S after round;.

viewed as moving the task of constructing cryptosystems

Unfortunately, no security is possible even if we allow

secure against side-channel attacks from the realm of engi<CS to update its state (i.e. whewt’ is not necessarily equal

neering or security research to cryptography, which over th

to M7+1) if we allow any (poly-time computabley;, to see

last 3 decades was extremely successful in defining securitythis let¢ = [|M|/A] and considerf;, j < t where each
models, and constructing cryptosystems that are provably-f; outputs different\ bits of M* (note that the function

secure in those models.

General Model for Leakage Resilience. We propose a
model for cryptographic computation where the class of

possible side-channel attacks is extremely broad, yet sim-

ple and natural. Models similar to ours have been pro-
posed before, in particular Micali and Reyzin [25] explicit
stated the “only computation leaks” assumption we will use.
The only other assumption on theplementation we make
is the (trivially necessary) requirement that the amount of

fj.j < t can compute the future statef* from the current
stateM7). After thetth round the adversary has learned the
complete state\?, and no security is possible beyond this
point. We call this théey-precomputation attack.

Hence, we have to somehow restrict the leakage func-
tion if we want security even when the total amount of
leaked information is (much) larger than the internal state
The restriction that we will use is that in each round, the
leakage functiory; only gets as input the part of the state
M/ that is actually accessed in thith round byCS. This

leakage in each round is bounded. This approach is inspiredranslates into a requirement on the implementation: we

by the bounded-storage and bounded-retrieval models an

has to best of our knowledge never been used in this con-

text. We stress however, that the main contribution of this
paper is not the definition of the model, but the construc-
tion of an actual cryptosystem (a stream-cipher) which is
provably secure in this model. Details follow.

Consider a cryptosystentsS, let M denote its mem-
ory andM° denote the data initially on (i.e. the secret

@ssume that only computation leaks information, and the

untouched memory cells” are completely secure. As illus-
trated in Fig. 1, in our construction of a stream-ciphét,
will consists of just three partd1,, M; andO (whereO

is the output tape), and in thgh roundCS (and thus the
leakage functiory;) will access onlyM; 1,04 2 andO. We
give the leakage function (in thgth round) access to the

completeM; 04 2, O, even if the computation oS only

key). Clearly the most general side-channel attack againstaccess a small part of it. Thus in an actual implementation,

a cryptosysten€S(M?) is one in which the adversary can
choose any polynomial-time computabdakage function f

and retrievef (M?) from the cryptographic machirte Of
course no security is achievable in this setting, as defining
f(M®) = MO the adversary learns the complete random
key. Thus a necessary restriction we must make @anthat

its output range is bounded {6, 1}* where) < |M°|.

We assume that the adversary can apply this attack man
times throughout the lifetime of the device. Technically,
this will be done by dividing the execution of the algorithm
implementingCS into rounds, and allowing the adversary
to evaluate a function on the internal stateG¥ in each
of those rounds (lef; denote the leakage function that she
chooses in thgth round, forj = 1,2...). In particular, in

one only must ensure that in thith roundM ;1 moq 2 does
not leak. This requirement should easily be realizable by
an actual implementation havingt, and M; use different
static memory cells (here “static” refers to the fact that th
memory needs not to be refreshed, and thus should not leak
any kind of radiation when not usetl).

Let us mention that the above restriction is not the only

ynatural restriction that one could make on the leakage func-

tions to avoid the key-precomputation attack. One other op-

2L et us mention that this model also covers the case where (the no
accessed)M ;1 mod 2 does leak in round, as long as this leakage is
independent of the leakage of (the accessedl) ,,,q 2 (i.€. when we
consider an adversai®’ who can in round;j choose two functiong”g’.
andf]’/ and then get# (M; mod 2) and alsof]’.’(MjH mod 2))- The
reason is that we can simula® by an adversar@ who just chooses

this paper we construct a stream cipher which in each roundone functionf; which OULPULSF! (M} mod 2) and AISOFY, | (M mod 2)

outputs a few bits.

1without loss of generality we can assume that the leakagédifumis
applied only taM P since all the other internal variables used in computa-
tion are deterministic functions 0¥1°.

(thusQ in round; simply precomputes the information th@t will learn

in roundj + 1 on the non-leaking part). Note that it's not a problem that
Q' might computef, , adaptively as a function of the information leaked
in roundj, as the [7eakage functiofy; has this information too, and thus

can compute th@"ﬂ’.’+1 thatQ’ would have chosen.



tion might be to allow the state to be refreshed using ex- pseudoentropy (i.e. is indistinguishable from some distri
ternal randomness. This option might be difficult to han- bution with high min-entropy) even if arbitrary informatio

dle for many cryptosystems — including ciphers — for sev- about the seed is leaked. Our construction can be instanti-
eral reasons. For example one must make sure that all leated with any pseudorandom-generator, and the amount of
gitimate parties get the randomness in each refresh cycle]eakage\ that we can tolerate in each step depends on the
which means that parties have to be often “online” to keep strength of the underlying PRG, itis at least logarithmid, b
their key valid, even if they almost never actually use it. can be as large as a constant fraction of the internal state of
Another option is to require that the leakage function is in S if the PRG is exponentially secure. The impatient reader
some very weak complexity class not including the function might want to skip ahead to Section 2.2 and have a look at
used for key evolutioA. the actual the definition.

Leakage Resilient Stream-Cipher. The main contriby- ~ ON (Non-)Uniformity. - Throughout, we always consider
tion of this paper is the construction of a stream cippier Nnon-uniform adversariés.In particular, our stream-cipher
which is provably secure in the model described above. Let!S S€cure against non-uniform adversaries, and we require
7, denote the data of's memory which is accessed in the the PRG used in the construction to be secure against non-

¢th round, and lefs, denote the output written b on its uniform adversaries. The only step in the security proof
output tape? in the ¢th round. where it matters that we are in a non-uniform setting, is

The classical security notion for stream ciphers implies in Section 5, where we use a theorem due to Barak et al.

that one cannot distinguishi; from a random string given 121 which shows that two notions of pseudoentropy (called
Ki,..., K, 1, of course our construction satisfies this no- HILL and metric-type) are equivalent for circuits. In [2]
tion. But we prove much more, namely that, is in- this equivalence is also proved in a uniform setting, and one
distinguishable from random even when not only given could use this to get a stream-cipher secure against uniform

Ko, ..., Ko, but additionallyAy, ..., A,_, whereA, — adversaries from any PRG secure against uniform adver-

f—(’T-) alnd ;a,chf- is a function W}th r;ing;{() 1 chésen saries. We will not do so, as for one thing the non-uniform

ajda;])tively (as o function o, Ko A17 A setting is the more interesting one in our context, and more-
] J—Lb ) y L) —

over the exact security we could get in the uniform setting is
much worse (due to the security loss in the reduction from
[2] in the uniform setting).

by an adversary. If the adversary also gkts we cannot
hope thatK, is indistinguishable from random any more,
as f, could for example simply output thefirst bits of K.
The best we can hope for in this case, is thatis unpre-
dictable (or equivalently, has high HILL-pseudoentrofy),
the full version of this paper [14] we will show that for our
construction this indeed is the case.

1.1. Related work

A general theory of side-channel attacks was put forward
by Micali and Reyzin [25], who propose a number of “ax-
ioms” on which such a theory should be based. In partic-
Forward Security. In many settings, itis not enough that ylar they formulate and motivate the assumption that “only
K, is indistinguishable (or unpredictable) given the view computation leaks information”, used subsequently in e.g.
of the adversary after round— 1 as just described, butit  [16, 28] and also in this work. As mentioned in the intro-
should Stay indiStingUiShable evenSfleaks some infor- duction’ most pub“shed work on Securing Cryptosystems
mation in the future. In our construction such “forward- against side-channel attacks are ad-hoc solutions trging t
security” comes up naturally, as the ké§ is almost in-  prevent some particular attack or heuristics coming withou
dependent (in a computational sense) from the stat® of security proofs, we mention some notable exceptions below.
after i, was output. Precise security definitions are given  Exposure-resilient functions [5, 9, 20] are functions
is Sect. 2. whose output remains secure, even if an adversary can learn
the value of somanput bits, this model has been extensively

Our Construction. The starting point of our construction ~ nvestigated and very strong results have been obtained.

is the concept of alternating extraction previously used in ~ 'Shai et al. [19, 18] consider the more general case of
the intrusion-resilient secret-sharing scheme from [¥@. ~ Making circuits provably secure [19] and even tamper resis-

move this concept to the computational setting by proving a tant [18] against adversaries who can read/tamper the value

lemma that states that the output of any PRG has high HILL  4Recall that a uniform adversary can be modelled as a Turingrimac
which as input gets a security parameter, whereas (more pajvadn-

SInterestingly, that would probably be the first case of aliéakrypto- uniform adversaries will, for each security parameter, @aithlly get a
graphic application where it makes sense to assume that theutatiopal different polynomial-length advice string. Equivalentlye can model
power of the adversary (in some parts of the attack scenarisinaller non-uniform adversaries as a sequence of circuits (indbyeithe secu-

than the computational power needed to execute the scheme. rity parameter).



of a bounded number of arbitrary wires in the circuit (and tance between X, and X; conditioned on Y. If X is dis-
not just the input bits). It is interesting to compare the re- tributed over{0, 1}" then letd(X) := §(X; U, ) denote the
sult from this paper with the approach of Ishai et al. On one statistical distance of X from a uniform distribution (over
hand, their results are generic, in the sense that theygeovi {0,1}"), and letd(X|Y) := 6(X;U,|Y) denote the sta-
a method to transform any cryptosystem given as a circuittistical distance ofX from a uniform distributiongiven Y.
C into another circuit’; that is secure against an adversary If d(X) < e then we will say thafX is e-close to uniform.
that can read-off up to wires, whereas we only construct We will say that a variableX has min-entropyt, denoted
a particular primitive (a stream-cipher). On the other hand H,(X) = k, if max, Pr[X = 2] = 27*.

we prove security against any side-channel attack, wherea
Ishai et al. consider the particular case where the adwersar
can read-off the values of a few individual wires. Moreover
Ishai et al. require special gates that can generate rando
bits, we do not assume any special hardware.

Canetti et al. [6] consider the possibility of secure com-
putation in a setting where perfect deletion of most of the
memory is not possible. Although the goal is different,
their model is conceptually very similar to ours: non-petfe
deletion of X is modelled by giving an adversafy{ X ) for
a sufficiently compressing functiofiof its choice. In their
setting, the assumption that parts of the state can be perlnitialization.  The secret key of our stream ciplfecon-
fectly erased is well motivated, unfortunately in our comite ~ Sists of the three variabled, B € {0,1}" and K, €
this would translate to the very unrealistic requiremeatth {0, 1}*. The valuesA, B, K, should be sampled uniformly
some computations can be done perfectly leakage free. ~ at random, but onlyd, B must be secreti{, must not, one

The idea to define the set of leakage functions by re- can think of i, as the firstk bits of output ofS. In an
stricting the length of function’s output is taken from the implementation, the memory &fis assumed to be split in
bounded-retrieval model [8, 11, 10, 7, 13], which in turn three parts,Mq, My, O, and forj > 0 we denote with
was inspired by the bounded-storage model R2&inally M}, M{ ™", 07~ the contents oMy, M, O at the be-
let us mention that some constructions of ciphers secureginning of the;jth round, in particular the initial state is
against general leakages were also proposed in the literaMg = 4, M{ = B andO° = K,.
ture, however, their security proofs rely on very strong as-
sumptions like the ideal-cipher model [28], or one-way per- Computation. As illustrated in Fig. 1, in théth roundS
mutations which do not leak any information at all [25]. does only access (which means reads and possible rewrites)

My mod 2 @nd the output tapé. Let 7, denote the values

Definition 1 (Extractor) A function ext {0, 1}Fec x
{0,1}" — {0,1}™ee isan (eext, Next) €Xtractor if for any
mX with Hoo(X) > neq and K ~ Uy, we have that
d((ext(K, X),K) < €ext-

2. A Leakage-Resilient Stream-Cipher

We will now formally define our security notions which
we already informally discussed and motivated in Sect. 1.

1.2. Probability-theoretic preliminaries

We denote withU,, the random variable with distri-
bution uniform over{0,1}". With X ~ Y we de-
note that X and Y have the same distribution. Let
random variablesX,, X; be distributed over some set
X and letY be a random variable distributed ovgr.
Define the statistical distance between X, and X; as
6(Xo; X1) = 1/23° .+ |Px,(x) —Px,(x)|. Moreover
let 6(Xo; X1]Y) := d(Xo,Y; X;1,Y) be thestatistical dis-

5The bounded-storage model is limited in its usability by thet that
the secret key must be larger than the memory of a potential satyer
which means in the range of terabytes. In the bounded-reatriraedel,
the key must only be larger than the amount of data adversaryezan
trieve without being detected (say, by having a computersvgend the
data from an infected machine), which means in the range of Maga
Gigabytes. Whereas in our setting the key length dependsepartiount
of side-channel information that leaks (in one round) fore ¢hyptosys-
tem considered, which (given a reasonable constructionfameassume
to be as small as a few (or a few hundred) bits. In particuldikeithe
bounded-storage and bounded-retrieval models, our keys maeto be
made artificially huge.

(on eitherM, or M, ) that is accessed in tiéh round, and
7, the value which is not accessed, i.e.

def  0—1 — def , ¢—1
T = MK mod 2 Te = M@—i—l mod 2

@)

We will refer to the output of théth round (i.e. the value
O on the output tap® at the end of this round) as,.

Adversary. As illustrated in Fig. 1, we consider adver-
sariesQ which in the/th round can adaptively choose a
function f, with range{0, 1}*, and at the end of the round
gets the outpuk’, and

A fo(m)
i.e. the output off, on input the data accessed $yn this
round. We denote withd, adversaries as just described
restricted to choose leakage functions with rafigel }*.
Let view, denote the view of the adversary aft&y, has
been computed, i.e.

viewy = [K07...,K57A1,...,A5].



Indistinguishability.  The security notion we consider re-
quires thatk, is indistinguishable from random, even when
givenview,_1.

Figure 1. General structure of the random ex-

periment S(A, Ky, B) 24 Q (the evaluation of S
is black, the attack related part is gray).

We denote withS(A4, B, Kj) £ Q the random ex-
periment where an adversay € A, attacksS (initial-
ized with a keyA, B, K;) for ¢ rounds (cf. Fig. 1), and
with view(S(4, B, Ky) ~ Q) we denote the viewiew,
of Q at the end of the attack. For any circui,q
{0,1}* — {0,1} (with one bit output), we denote with
Advind(Ding, Q, S, ¢) the advantage db;,q in distinguish-

ing K, from random giverview(S = Q), formally

AdVlnd(Dind7 Q7 Sa ‘g) = |p7‘eal - prand| where

def

. -1
Prand = A7g71"K0[Dind(Vl€W(S(A,B,KO) w5 Q),Ux) =1]
Preal déf ‘47E7I'K()[Dind(VieW(S(147 B7 KQ) 6591 Q)7 Kg) = 1]

In the full version of this paper, we will also consider the
case where the distinguisher also g&ts i.e. we assume
that information leaks also in rountd Although then we
can’t hope forK/, to be indistinguishable from random (as
A, could for example be the first bits of K), we still can
require thati, is unpredictable.

Forward Security of S.  As motivated in the introduction,
we’'ll also consider “forward-secure” notions of the above
definition. Informally, we'd like to extend the definitions
Advind just given, but additionally give the attackey,q the
complete stateMy, O°, M of S after K, has been com-
puted. Of course thei, = Of cannot be secure in any
way as it is given t®;,4 entirely. We could simply not give

O! to Dj.q, but then we cannot claim that we leaked the
state ofS completely, as in our constructia’ is needed
to compute the future outputs 6f There are at least two
ways around this problem. We could relax our requirement
on forward security, and not leak the state after ro¢ralit
only after round 4 1 (in terms of the implementation, this
would mean that the output, is indistinguishable, if in
roundsf? and ¢ + 1 nothing leaked, even given the complete
state ofS after round? + 1).

Another possibility, which we’ll use, is to split the value
Ky into two partsk, = K || K3, such that only thég )
part is actually used b$ to compute the future state. We
then require thafp"* (and not the entird(,) is indistin-
guishable from random if in rounéi nothing leaked, even
when given the state &f after round?, where K3t is not
considered to be part of the state.

Let state, & [M§, K, M¢] denote the state B
after round? (not containingK¢“t as just explained). The
forward secure indistinguishability notion is given by

AdvindFwd(Ding, Q, S, ¢) = |pfwd fwd

real — Prand

fwd
rand

fwd
real

wherep andp’ 7 are the probabilities
Pr [Ding(view(S(4, B, Ko) 5 Q, statey), Ujgan)) = 1]

Ko

Pr [Dina(view(S(A4, B, Ko) ' Q, state,), K*) = 1]
Ko

respectively. The only difference fadvind is that nowD;,q
additionally getsstate,, and we only requird<y"* (and

not the wholeK,) to be indistinguishable. Thus one gets
forward security at the prize of discarding th§** part of

S’s output . In our constructionK7** will be just a ran-
dom seed for an extractor, using existing constructions we
can make this part logarithmic in the total length?of, thus

the efficiency loss one has to pay to get forward security is
marginal.

2.1. The Ingredients

The main ingredients of our construction is the concept
of alternating extraction introduced in the intrusionHiest
secret-sharing scheme of [13] (which again was based on
ideas from the bounded storage model [12, 24, 31]), com-
bined with the concept of HILL-pseudoentropy (cf. Def. 3,
Sect. 5) which we use to getcamputational version of al-
ternating extraction.

Alternating Extraction.  Letext : {0, 1}Fe x {0,1}" —

{0,1}* be an(eeu, nex )-extractor (cf. Def. 1). Consider
some uniformly random4, B € {0,1}" and some ran-
dom Ky € {0,1}*. As illustrated in Fig. 3 in Sect. 4, let



Ky, Ks,... be computed a(; = ext(K™,C;) (where
K™ denotes thé.,: first bits of K andC; = B if ¢ is odd
andC; = A otherwise). So thd(;’'s are computed by al-
ternately extracting froml and B. It is not hard to show
that K; = ext(K™, C;) is ieex close to uniformly random
given Ky, . .., K;—1 while C; has still enough min-entropy
for our extractor (i.eHy (Ci| K1, ..., Ki—1) > Next)-

As shown in [13], the key¥; is even close to uniformly
random when not only givek’y, ..., K;_; but also some
valuesf,(C1), ..., fi—1(C;—1) for arbitrary functionsf; as
long asC; has min-entropy at least.,; (conditioned on
Ko, ..., K;_1,andfi(C1),..., fi-1(Ci-1)).

Consider a “stream cipheB* (A, B, K;) which outputs
K1, Ko, ..
Q which, beforeK; is computed, can adaptively choose
a function f; and then gets<;, f;(C;).6 As explained in

is indistinguishable from some distribution with high min-
entropy. A random variable which is computationally indis-
tinguishable from some variable with min-entropys said

to have HILL-pseudoentropy. It is not hard to see that
a pseudorandom valuB; has high HILL-pseudoentropy
when givenf;(B;) for some efficient functiory;, but this

is not enough for our application, as the leakage function
fi is given access t®;_; (and not justB;), from which it
can compute the seel; used to computd; = prg(X;).

We will prove (Lemma 3) that for any pseudorandom gen-
eratorprg, the output ofprg(X) on a random seed has
high HILL-pseudoentropy even if some function (with suf-
ficiently short output) ofX' (and not onlyprg(X)) is leaked.

. computed as described above, and an adversary Using this lemma, we can prove that refreshing using

a PRG as just described actually works, and will result in
a “fresh” value B; (or A; for eveni) having high HILL-

the previous paragraph, we can give the following security pseudoentropy.

guarantee fo5*: as long as the min-entropy of; is at
leastn., (given the adversary’s view), the next outpkit

is close to uniformly random (given the view of the adver-
sary so far).

Pseudoentropy. The stream ciphef* just described is

not very useful, as it only provides security (in the sense
that the next output looks random given the current view as

required by ourAdvind security notion) as long as the out-
put (i.e. theK;’s plus the leaked information) is shorter (by
at leastn,,; bits) than the initial key.

To get security beyond that bound, we will “refresh”
the valuesA, B after we extracted from them. Let; =
M and B; = M} denote the values oM, and M,
after round: respectively. In round (we assumei is
odd, otherwise replace the role df and B) we extract
(K;, X;) = ext(K™, B;_1), and useX; to compute the
fresh B; := prg(X;) using a pseudorandom generapog
as illustrated in Fig. 2. If at the beginning of t round
B;_1 has min-entropy at least.,; (given the adversaries
view), K™ is pseudorandom (give®;) and we assume
that during thigith round no information is leaked, thex,
and thus alsaB; = prg(X;) is pseudorandom given the
view of the adversary.

2.2. The construction

Figure 2. lllustration of the random experi-

ment S(Ay, Bo, Ko) 3, Q for the stream cipher
S as described in Section 2.2.

Of course assuming that the refreshing phase does not

leak any information is completely unjustified, and we
do not want to make such an assumption.
A; = fi(B;) to the adversary, we cannot hope By to

be pseudorandom (just consider the case wliigiB;) are
the A first bits of B;). Fortunately, B; needs not to be
(pseudo)random to apply alternating extraction, all wadnee
is that B; has high min-entropy. Of cours®; = prg(X;)
cannot have more min-entropy thah, but as we consider
computationally bounded adversaries, it is enougBijf

6As K;_ can be hard-coded intf, this function has access to all the
data accessed during the computatiod@f= ext(K™,, C;)

As we give

We will now formally define the construction just out-
lined, based on an extractext : {0,1}Fe x {0,1}" —
{0,1}™e and a pseudorandom generaiey : {0, 1}Fee —
{0,1}" (c.f Sect. 5).

State: The state ofS at the beginning of round is
ME METT O, The computation done in round
¢ is defined below.

GetKey: ReadK,_; = O’ ! and parse it ag{,_; =
(K, K3) € {0, 1fFen x {0, 1} e,



Extract: Computeext(Kp<, M57L

(K, X¢) € {0,1}F x {0, 1} Fore,

) and parse it as

Write output: Write K, on O.
Refresh: Computeprg(X,) and write it onMy 104 2-

3. Security of S

Total Size. We denote withsize(D) the size of a circuit

D. For an adversarQ € A,, size(S < Q) denotes the

size of a circuit needed to implement the random experi-

ments - Q.

Theorem 1 (Security ofS) Letext : {0, 1}Fetx {0,1}" —

{0,1}™e¢ be an (eext, next)-extractor, and let prg

{0,1}*e — {0,1}" be an (€prg, Sprg) PSeUdorandom gen-

erator. Consider any ey > 0 and let § ~ €2 Sprg/S7.

Consider any ez, > 0, A > 0 where

62

< Qgip—Q’A s Next < T—A—(A+Mext) —210g(1/€gap)
2

Then for all adversaries Q € A, and D where size(S &

Q) + size(D) < s with &, def 62(3egap + EHILL + €ext)

€prg

Advind(D, Q,S,¢) < §, and AdvindFwd(D,Q,S,?) < é,

3
We actually do not even need the initial key to S to be uni-
formly random, but only require a weaker condition as give
by equations (10) and (11).

The proof of Theorem 1 is split in three parts. The first
part in Section 4 on alternating extraction is information
theoretic and uses ideas from the intrusion-resilientetecr

sharing scheme from [13]. In the second part (Section 5)

we revisit some notions and results on computational pseu-

doentropy. We then prove that the output of any pseudo-
random generator has high HILL pseudoentropy even if in-
formation about the seed is leaked. In Section 6 we prove
Theorem 1 by using the result from Section 5 to get a com-
putational version of alternating extraction from Sectfon

How Much Leakage can we Tolerate? The amount of
leakage) we can tolerate is bounded by (2) g, <
€2.0/2* — 2-4. For concreteness, assume we Aesuch

that2 =2 < €prg/2 andegap > /€prg/4, then we can set

o

To see what this means it is convenient to take an asymp
totic viewpoint and think o6 as afamily of stream ciphers

—1
log €rg

2

“See Lemma 2 as to whatexactly is.

indexed by a security parameter which we identify with
korg, 1.€. the input length terg. If prg is secure against
polynomial-size circuits, theg,, = 2-<°e k) (and thus

X € w(logkyg)), and if prg is secure against exponential
size circuits, them,g = 27©%Fws) (and\ € O(kprg)).

Already thel € w(logkyg) case covers quite a large
class of real-life attacks. In particular many attacks Hase
on measuring the power consumption result in logarithmic-
size leakages, e.g. in a so-callddmming weight attack
(see e.g. [21]) the adversary just learns the number of wires
carrying the bit 1. Of course this value is of logarithmic
length in the size of the circuit, and hence alséjp.

Inthe case\ € O (k) (i.€. if prg is exponentially hard)
one can leak even constant fraction of the entire stafe of

4. Random Keys by Alternating Extraction

K, = ext(KM™, A)

EN V3
f3(73)
\\:
[4] Ky = ext(K®, B) 3] [Q]

Figure 3. The “alternating extraction” random

experiment S*(A, B, Ky) 4 Q as considered
in Lemma 1.

In this section we state an information theoretic result
which is very similar to the main main technical lemma
used in the security proof of the intrusion-resilient sécre
sharing scheme from [13], a proof appears in [14].

Basically, we consider the random experiménpﬂ Q
but without the refreshing. For this I8t denoted the con-
structionS but whereA and B are never replaced: thus in

the random experimefst' (A, B, Ky) & Q whereQ € A,,
in the jth round Q chooses a functiorf; : {0,1}" —
{0,1}* and as output get&; = ext(K*),7;) andA; =
fj(7;) wherer; = Bif j is odd andr; = A otherwise.

As Q attacksS*, she learns information oA and B, and
thus the min-entropy oft and B degrades. We show that as
long as the min-entropy oft and B is high enough (which
means more than,,; as required by the extractext), the



next keyK; to be output is close to uniformly random when Definition 4 (Metric-type pseudoentropy [2]) We say X

given the view after{;_; has been computed.

Lemma 1 belows similar to Lemma 8 from [13] (for the

special case of two players).

Lemma 1 (Alternating Extraction) Let ext : {0, 1}Fe x
{0,1}7 — {0,1}™et be an (€ext, Mext)-eXtractor. Let
A, B € {0,1}" and K, € {0,1}* be random variables
where A and B are independent and

d(Ko|B) < € H(A) >r—A  Hy(B) >r-A,
Consider any A, A, > 0 and 1 > eg,, > 0 which satisfy
Next <7 — A — [£/2](A 4+ Mext) — log(1/€gap)-

Consider any adversary Q € .4, and the random ex-

periment S*(A, B, Ky) ~ Q. Recall that view, =

[Ko,..., K¢ A1,...,A¢ and 7, = B if ¢ is odd and
7, = A otherwise. We have
d(Kyy1|viewy, 7o) < (€ + 1)€ext + 2€gap + €0,

i.e. given 7, and the view of Q after the computation of
Ky, the next key Ky1 = ext(K,,7,) tobeoutput by S is
(Leext + 2€gap + €0)-close to uniformly random.

5. Pseudoentropy

In this section we will prove that the output of a PRG has
high HILL-pseudoentropy even if some function of the seed
is leaked. We first prove this result for a weaker notion of

has metric-typepseudoentropy %, denoted HQ{'gtfiC(X ) >k,
if for every circuit D of size s there exists a distribution Y
withHo. (Y) > kand 6°(X,Y) <e.

Barak et al. [2] use the von Neumann’s min-max theorem
[26] to prove the equivalence &#H!'L and HMetric,

Lemma 2 Let X be a distribution over {0,1}". For every
€, €qiL > 0 and &, iin\{Istric(X) > kthen Hle-i—:-LeI;HLL,S(X) >
k where s € O(ns/ef ) or equivalently § € Q(e?,  s/n).
More precisely (by inspection of the proof of Thm.5.2in[2])
s < 8n3/e . — ¢ where ¢ isthe size of a circuit needed to

compute the majority of 8n /3, bits.
5.1. Pseudoentropy of a PRG

By the following lemma, the output of a PRG has high
metric-type pseudoentropy (and thus by Lemma 2 also high
HILL-pseudoentropy) even if some function of its input is
leaked.

Lemma 3 (Metric/HILL Pseudoentropy of a PRG) Let
prg : {0,1}" — {0,1}™ and f : {0,1}" — {0,1}*
(where1 < A < n < m) be any functions. If prg is
a (€prg; Sprg)-SECUre pseudorandom-generator, then for
any e, A > 0 satisfying epry; < ;—i — 272, we have with
X~U,

P e (I (X) = y) 2 m = A = 1 (e |
4

pseudoentropy called “metric-type”, and then use the equiv and for any ey > 0

alence of metric-type and HILL-pseudoentropy (Lemma 2)

to get our lower bound for HILL-pseudoentropy.

Basic Definitions We denote withs®(X;Y) the advan-

tage of a circuitD in distinguishing the random variables

X,Y,ie:62(X;Y) ¥ | Pr[D(X) = 1] - Pr[D(Y) = 1]|.

With 6,(X;Y) we denotenaz p6°(X;Y) where the max-
imum is over all circuitsl? of sizes. For a random variable
X over{0,1}*, dy(X) & 5,(X;U.).

Definition 2 (Pseudorandom Generator) A function prg :
{0,1}™ — {0,1}™ isa (9, s)-secure pseudorandom gener-
ator (PRG) if ds(prg(U,)) < 0.

Definition 3 (HILL pseudoentropy[17, 2]) Wesay X has
HILL pseudoentropy k, denoted by H''N (X)) > £, if there
existsadistribution Y where H,(Y) > kand 05(X,Y) <
€.

The above definition requires that there exists a distidouti

Y with high min-entropy that is indistinguishable from

HILL
y::P;.I(‘X)[HE+€H|LL,§(prg(X)|f(X) = y) Z m— A] Z 1—ce¢
®)
where § &~ €2 | Sprg/8m.

Proof : Eq. (5) follows from (4) by Lemma 2. To prove (4)
assume for contradiction that it does not hold. Hence, by
Def. 4, there exists a subset

Sc{0,1}* where Pr[f(U,) €S >¢ (6)

such that for each € S there exists a distinguishér, of
size at moss,g such that for every random variabtewith
H.(Z) > m — A we have (agaiX ~ U,)

|Pr[Do(Z) = 1] — Pr[Da(prg(X)) = 1|f(X) = al| z(e)
7

Consider some < S for which
Pr[f(U,) =a] >27 ¢ (8)

Such ana exists by (6) and as$S| = 2*. Our distin-
guisher for the PRGrg will be the distinguisheD,, sat-

by all distinguishers. One can also consider a notion whereisfying (7) and (8). It remains to prove th&t, breaks
the quantifiers are exchanged, i.e. to allow the distriloutio prg with advantage higher thag,,. For 5 € {0,1} let

to depend on the distinguisher.

Ig :={x € {0,1}"" : Do(x) = 5}



Claim 1 For some 3 € {0, 1} we have |Z5| < 2m—4

Proof of Claim: Assume for contradiction thaZz| >
2m—Afor 3 =0andgB = 1. Forg € {0,1} andX ~ U,
letps = Pr[D,(prg(X)) = B]f(X) = a]. Let Z’ be aran-
dom variable distributed uniformly ovet) U 57 whereSj
is an arbitrary subset @f; of sizepz2™~* (here we use the
fact that|Zz| > 2m~4). Clearly since S, U Sj| = 2m—4
we have thaH . (Z’') = m — A and by construction (with

Pr[D,(Z') = 1] — Pr[Dq(prg(X)) = 1] f(X)
—_— ——

=Pr[Z'€S|]=p1

al]=0

contradicting (7). This finishes the proof of the claimA
For 8 as guaranteed by the above claim, we have

Pr[Da(Un) = ] = [Z5/27" <275 (9)

By equation (7), using thdd ., (U,,) = m > m — A we
get:

| Pr[Da(Unm) = ] = Pr[Da(prg(X)) = BIf(X) = a][ = €
—_———

<2-A

By assumption, we have > €2/2* > 272, As for any
x,y, e > 0we have thatr—y| > e ande > x impliesy > e,
the above equation implieBr[D, (prg(X) = B|f(X) =
a] > €, and further withX ~ U,

Pr[D,(prg(X)) = /]

2

> Pr(Da (prg(X)) = Bl (X) = a] - Prlf(X) = a] > .

>e >2—*.€ by(8)

By (9) and the above equation, the advantage pfor U,,
andprg(U,,) is at least

62 A
> —=2 > €prg

Pr[Da(prg(Un)) = B]—Pr[Do(Un) = B 5%

which contradicts thée,,s, sprg)-Security ofprg. O

6 Putting Things Together

In this section we show how the security ®fas stated
in Theorem 1 follows from the results in the two previous
sectionsS is based orxt andprg where

o ext: {0, 1}Fex{0,1}" — {0,1}™= iS aN(€ext, Next)-
extractor.

e prg: {0,1}Fee — {0,1}" is @n(€prg, Sprg) PSEUOran-
dom generator.

Further we sefoy: = Mext — kext + kprg (thUS My =
ket + kout + Kprg) and fix parametera\, ez.p, A satisfying

2
< Egap

€prg = 3 — 272 andne < 71— A — (A +Meyt) —log e,

gap

We also fix some . > 0 and sets := ey, | Sprg /37

The following lemma quantifies how much security is
“lost” by one round of our stream cipher. Letze; denote
the size of the circuit realizing thith round of the experi-

mentS - Q, thenY"!_, size; = size(S - Q).
Lemma 4 (Theith round) Consider the random experi-
ment S <o Q. Then if before round ¢ < ¢ (recall that
T,_1 =7 = B;ifiisoddand 7,_; = 7, = A; other-
wise) for somes; 1 < §and ¢ def EHILL + €gap
HeH,l)lglzil(Ai_ﬂviewi_l, Bi1)>2r—A
Hg'jle;l(Bi_l\vieW,‘_l, Ai)>r—A
ds,_, (Ki_1|view;_2,7Ti—1) < €1
then with s; def Si—1 — size;, s} def $;i—1 — size(ext) and
6 ey + o + €gap + €.
de (K, Xilview;—1,7i) <€
with probability 1 — egap — €;
HeH,|7|;|;(Ai|viewi, B;)
Hg';';(Bi |view;, A;)
This lemma can be proven by using Lemma 3 to get a com-
putational version of the alternating extraction Lemma 1

(see the full version [14] for details). We'll now see how
Theorem 1 isimplied by this lemma. Let = 0 andsy = §,

thene, = £(26gap+€ext +€riLL) ands, = §—size(S + Q).
If the initial key Aq, By, K, satisfies
H (Aol Bo) 27— A HE (Bol4p) 27— A (10)
d(Ko|Bo) = €o (11)
as itis the case in Theorem 1, by Lemma 4 with probability
1-— Zle(egap +€) > 1 — l(€gap + €¢) We have

>r—A
>r—A

dg (Ko, Xe|view,—1,7¢) < €

This proves (note that'¢ < s¢) the bound for theAdvind
as stated in Theorem 1. To prove the boundXdvIndFwd
we moveX,, K}** to the conditioned part (recall thaf, =
szt”Kgut)

d% (KgUt‘K?Xt, Xy, viewp_1,7¢) < €

Then we apply therg to X,
Ag,Bg
—
dSZ _ lprgl(KEXWK?Ut,VieWg,l, To+1 ,?5) <€
—— v

~ep pre(Xe)
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